

Revision 1.00

TAPERED AMPLIFIERS Semiconductor Optical Amplifier

amsTECHNOLOGIES

where technologies meet solutions

info@amstechnologies.com www.amstechnologies-webshop.com

General Product Information

ectroscopy

Absolute Maximum Ratings

Parameter	Symbol	Unit	min	typ	max
Storage Temperature (non condensing)	T_S	°C	-40		85
Operational Temperature at Case (non cond.)	T_{C}	°C	0		30
Forward Current	I _F	Α			1
Reverse Voltage	V_R	V			0
Output Power	P_{opt}	W			0.3

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _C	°C	5	15	20
Forward Current	I _F	Α			0.75
Input Power	P _{input}	mW	10		50
Output Power	P _{opt}	W			0.25

Measurement Conditions / Comments
non condensing
with proper injection from a seed laser

Characteristics at T_{LD} = 15 °C at BOL

Parameter	Symbol	Unit	min	typ	max
Design Wavelength	λ_{C}	nm		650	
Gain Width (FWHM)	Δλ	nm		10	
Temperature Coefficient of Wavelength	dλ / dT	nm / K		0.25	
Operational Current @ P _{opt} = 0.25 W	I _{op Gain}	А			0.75
Output Power	P_{opt}	W	0.25		
Amplification	G	dB		12	
Cavity length	L_{C}	μm		2000	

Measurement Conditions / Comments
see images on page 4
with proper injection from a seed laser
with proper injection from a seed laser

Revision 1.00

TAPERED AMPLIFIERS Semiconductor Optical Amplifier

Characteristics at T _{LD} = 15 °C	at BOL				cont'd
Parameter	Symbol	Unit	min	typ	max
Reflectivity at Front Facet	R _{ff}			3·10-4	1.10-3
Reflectivity at Rear Facet	R_{rf}			3·10-4	1.10-3
Input Aperture (at rear side)	d_{in}	μm		7.5	
Output Aperture (at front side)	d _{out}	μm		70	
Astigmatism	А	μm		tbd	
Input Divergence parallel (1/e²)	$\Theta_{in }$	0		tbd	
Input Divergence perpendicular (1/e²)	$\Theta_{\text{in}\perp}$	0		tbd	
Output Divergence parallel (1/e²)	$\Theta_{\text{out} }$	0		tbd	full angle
Output Divergence perpendicular (1/e²)	$\Theta_{ ext{out}\perp}$	0		tbd	
Beam quality factor	M^2				
Polarization				TE	

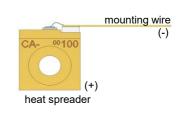
Measurement Conditions / Comments
estimated at recommended maximum forward current
full angle
E field parallel to junction plane

Typical Measurement Results

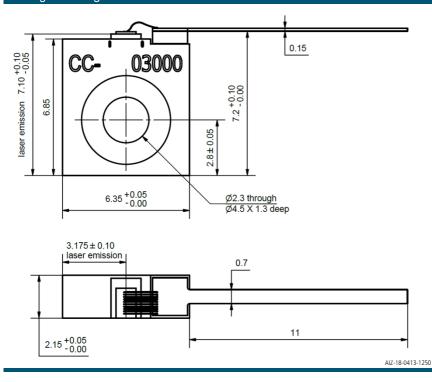
Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice

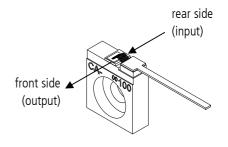
Revision 1.00

TAPERED AMPLIFIERS Semiconductor Optical Amplifier


Package Dimensions

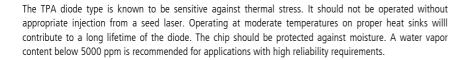
Parameter	Symbol	Unit	min	typ	max
Height of Emission Plane	h	mm	7.05	7.10	7.20
C-Mount Thickness	t	mm		2.15	


Measurement Conditions / Comments

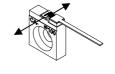

Package Pinout

Mounting Wire	Cathode (-)
Housing	Anode (+)

Package Drawings


Revision 1.00

TAPERED AMPLIFIERS Semiconductor Optical Amplifier


Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The laser emission from this diode is close to the invisible infrared region of the electromagnetic spectrum. Avoid direct and/or indirect exposure to the free running beam. Collimating the free running beam with optics as common in optical instruments will increase threat to the human eye.

Each laser diode will come with an individual test protocol verifying the parameters given in this document.

INVISIBLE LASER RADIATION
AVOID EYE OR SKIN EXPOSURE
TO DIRECT OR SCATTERED RADIATION
CLASS 4 LASER PRODUCT
WAVELENGTH 650 nm
MAX. OUTPUT POWER 0.3 W

IEC-60825-0

Complies with 21 CFR 1040.10 and 1040.40

Revision 0.90 2023-01-05

TAPERED AMPLIFIER Semiconductor Optical Amplifier

General Product Information

Application
Spectroscopy

Absolute Maximum Ratings

max
85
30
1.3
2
0.6

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _{case}	°C		20	
Forward Current	I_{F}	А			1.2
Input Power	P _{opt}	mW	10		50
Output Power	P _{opt}	W			0.5

Measurement Conditions / Comments
non condensing
seeding required above 0.6 A
with proper injection from a seed laser

Characteristics Tcase'= 20° C at BOL

Parameter	Symbol	Unit	min	typ	max
Wavelength	λ	nm		670	
Gain Width (FWHM)	Δλ	nm		10	
Operational Current	I_{OpGain}	А			1.2
Output Power	Popt	W	0.5		
Polarization				TE	
Amplification	G	dB		13	
Temp. Coefficient of Wavelength	dλ/dT	nm/K		0.3	
Cavity Length	L	μm		2000	
Reflectivity at Front Facet	R _{ff}			3.10-4	1.10-3
Reflectivity at Rear Facet	R_{ff}			3.10-4	1.10-3

with prop	er injecti	on fror	n a seed	laser	
E field par	allel to ju	ınction	plane		
with prope	er injectio	on from	a seed	laser	

Distributor

info@amstechnologies.com www.amstechnologies-webshop.com

Revision 0.90 2023-01-05

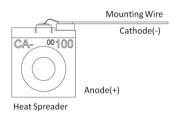
TAPERED AMPLIFIER Semiconductor Optical Amplifier

Characteristics	Tcase'= 20° C at BOL				cont'd
Parameter	Symbol	Unit	min	typ	max
Input Divergence parallel	$\Theta_{out }$	0		10	
Input Divergence perpendicular	$\Theta_{out\perp}$	0		50	
Output Divergence parallel	$\Theta_{out} $	0		10	
Output Divergence perpendicular	$\Theta_{out\perp}$	0		45	

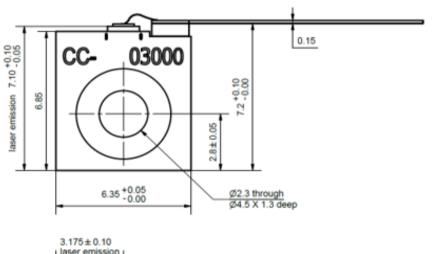
Measurement Conditions / Comments
1/e² (full angle)

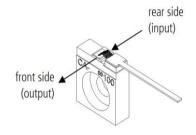
Package Dimensions				
Parameter	Symbol l	Jnit min	typ	max
Height of Emission Plane	d _{EP}	7.05	7.1	7.2

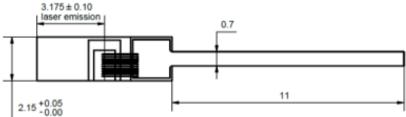
Measurement Conditions / Comments	


Revision 0.90 2023-01-05

TAPERED AMPLIFIER Semiconductor Optical Amplifier

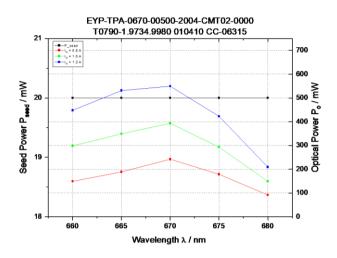



Pin Assignment


Laser Diode Cathode (-)	Mounting Wire
Laser Diode Anode (+)	Housing

Package Drawings

AIZ-18-0413-1250



Revision 0.90 2023-01-05

TAPERED AMPLIFIER Semiconductor Optical Amplifier

Typical Measurement Results

Measurement results and other illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract.

Unpacking, Installation and Laser Safety

Unpacking the taperd amplifier should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The TPA diode type is known to be sensitive against thermal stress. It should not be operated without appropriate injection from a seed laser. Operating at moderate temperatures on proper heat sinks willl contribute to a long lifetime of the diode.

This amplifier is designed for the setup of MOPA systems. An optical isolator should be used between seed laser and amplifier in order to suppress backreflections that may disturb the emission spectrum of the seed laser and may cause mode-hops in case of wavelength tuning.

Each tapered amplifier will come with an individual test protocol verifying the parameters given in this document.

Avoid direct and/or indirect exposure to the free running beam. Collimating the free running beam with optics as common in optical instruments will increase threat to the human eye.

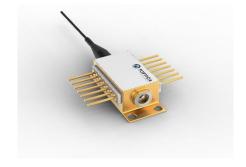
In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

Laser Emission

Complies with 21 CFR 1040.10 and 1040.40

info@amstechnologies.com www.amstechnologies-webshop.com

EYP-TPA-0670-00500-3006-BTU02-0000


Revision 0.51

2024-04-03

TAPERED AMPLIFIER Semiconductor Optical Amplifier

Product	Application
70 nm Tapered Amplifier	Spectroscopy
4 Pin Butterfly Package	
vith PM Fiber and FC/APC Connector (Input)	
and collimated Output Beam	

Absolute Maximum Ratings

General Product Information

Symbol	Unit	min	typ	max
T _S	°C	-40		85
T_C	°C	-20		75
I _F	Α			2.2
V_R	V			2
P_{opt}	W			1.2
I _{TEC}	Α			5
V_{TEC}	V			7
	T _S T _C I _F V _R P _{opt} I _{TEC}	$\begin{array}{ccc} T_S & ^{\circ}C \\ T_C & ^{\circ}C \\ I_F & A \\ V_R & V \\ P_{opt} & W \\ I_{TEC} & A \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T _S °C -40 T _C °C -20 I _F A V _R V P _{opt} W I _{TEC} A

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _{case}	°C	0		50
Operational Temperature at Chip	T_{chip}	°C	10	20	30
Forward Current	I _F	Α			1.8
Input Power	P_{opt}	mW	10		50
Output Power	P_{opt}	W		0.8	1

Measurement Conditions / Comments
measured with integrated thermistor
seeding required above 1 A
Insertion loss ≤ 0.3 dB
with proper injection from a seed laser

Characteristics Tcase = 20° C at BOL

Parameter	Symbol	Unit	min	typ	max
Wavelength	λ	nm		670	
Gain Width (FWHM)	Δλ	nm		10	
Operational Current	I _{Op Gain}	Α			1.8
Output Power	P_{opt}	W		0.8	
Polarization				TE	
Amplification	G	dB		15	
Temp. Coefficient of Wavelength	$d\lambda / dT$	nm/K		0.25	

Measurement Conditions / Comments
Popt = 0.8 W
E fieldparallel to base plate
at recommended maximum forward current

Distributor

EYP-TPA-0670-00500-3006-BTU02-0000

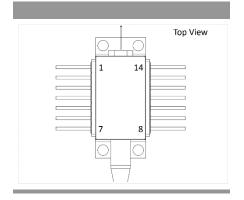
Revision 0.51

Thermistor (Standard NTC Type)

2024-04-03

Characteristics	Tcase = 20° C at B	OL			
Parameter	Symbol	Unit	min	typ	max
Beam Diameter	d	mm		1	
Output Divergence parallel	Θ_{out}	mrad		3	
Output Divergence perpendicular	$\Theta_{out\perp}$	mrad		3	

Measurement Conditions / Comments
1/e²
1/e² (full angle)
1/e² (full angle)


Parameter	Symbol	Unit	min	typ	max
Current	I _{TEC}	Α		1.2	
Voltage	U_TEC	V		2	
Power Dissipation (total loss at case)	P _{loss}	W		8	
Temperature Difference	ΔΤ	K			40

Measurement Conditions / Comments	
Popt = 0.8 W; ΔT = 20 K	
Popt = 0.8 W; ΔT = 20 K	
Popt = 0.8 W; ΔT = 20 K	
Popt = 0.8 W	

Parameter	Symbol	Unit	min	typ	max
Resistance	R	kOhm		10	
Beta Coefficient	β			3892	
Steinhart & Hart Coefficient A	Α		1	.1293 x 10 ⁻	3
Steinhart & Hart Coefficient B	В		2	.3410 x 10	- 4
Steinhart & Hart Coefficient C	С		8	.7755 x 10	-8

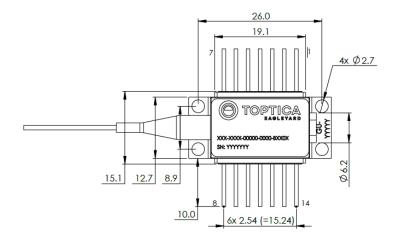
Measurement Conditions / Comments
25°C
0°C 50°C

Pin Assignment	
1 Thermoelectric Cooler (+)	14 Thermoelectric Cooler (-)
2 Thermistor	13 not connected
3 not connected	12 not connected
4 not connected	11 Amplifier (Cathode)
5 Thermistor	10 Amplifier (Anode)
6 not connected	9 not connected
7 not connected	8 not connected

EYP-TPA-0670-00500-3006-BTU02-0000

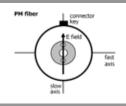

Revision 0.51

2024-04-03



TAPERED AMPLIFIER Semiconductor Optical Amplifier

Package Drawings



SWZ-23-0117-1237

Fiber and Connector Type (Input)

Parameter		
PM Fiber	900 / 125 / 4.5 µm, UV/Polyester-elastomer Coating	
	length: 1 +/-0.1 m	
Connector	FC/APC narrow key / 2 mm	

Measurement Conditions / Comments

document.

EYP-TPA-0670-00500-3006-BTU02-0000

Revision 0.51

2024-04-03

TAPERED AMPLIFIER Semiconductor Optical Amplifier

Unpacking, Installation and Laser Safety

Unpacking the taperd amplifier should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The TPA diode type is known to be sensitive against thermal stress. It should not be operated without appropriate injection from a seed laser. Operating at moderate temperatures on proper heat sinks willl contribute to a long lifetime of the diode.

spectrum. Avoid direct and/or indirect exposure to the free running beam. Collimating the free running

Each tapered amplifier will come with an individual test protocol verifying the parameters given in this

beam with optics as common in optical instruments will increase threat to the human eye.

LASER RADIATION
AVOID EYE OR SKIN EXPOSUR
TO DIRECT OR SCATTERED RADIATION CLASS
WAVELENGTH 670 nm
Max. OUTPUT POWER 1.2 W

IEC-60825-1

Complies with 21 CFR 1040.10 and 1040.40

